Abstract

A new nonlinear finite element model is provided for the nonlinear flutter response of shape memory alloy (SMA) hybrid composite plates under the combined effect of thermal and aerodynamic loads. The nonlinear governing equations for moderately thick rectangular plates are obtained using first-order shear-deformable plate theory, von Karman strain-displacement relations and the principle of virtual work. To account for the temperature dependence of material properties, the thermal strain is stated as an integral quantity of thermal expansion coefficient with respect to temperature. The aerodynamic pressure is modeled using the quasi-steady first-order piston theory. Newton-Raphson iteration method is employed to obtain the thermal post-buckling deflection, while the linearized updated mode method is implemented in predicting the limit-cycle oscillation at elevated temperatures. Numerical results are presented to show the thermal buckling and flutter characteristics of SMA hybrid composite plates, illustrating the effect of the SMA volume fraction and pre-strain value on the aero-thermo-mechanical response of such plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call