Abstract

Atomic level understanding of graphene oxidation behaviour is presently far from complete. During large scale preparation of graphene from graphene oxide (GO), persistent presence of up to 8% residual oxygen is an issue of great concern. Such incomplete reduction is attributed to the presence of highly stable carbonyl and ether groups. Here we present a new approach for limiting the formation and behavior of these functional groups. We report high temperature molecular dynamics simulations on the oxidation process of pristine (Pr) and mono-vacancy (MV) graphene with O2 with specific focus on the initial reaction period. An abnormal thermal behaviour was observed in the onset times of oxidation reactions; significant differences were detected in the nucleation and growth mechanisms and reaction kinetics. Overall reaction kinetics was significantly slower in the thermal region (Pr: 4350–4450 K; MV: 4300–4450 K). By identifying this region experimentally or theoretically, a narrow window of minimal carbonyl group formation and residual oxygen could be created leading to a major breakthrough in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.