Abstract
The thermal stability and the adsorption properties have been investigated for three benzothiazole compounds: 2-mercaptobenzothiazole (MBT), N-cyclohexyl-2-benzothiazole sulfenamide (NCBSA), and 2,2′-dibenzothiazole disulphide (BTD), reported in our early studies as corrosion inhibitors for carbon steel in different media. The electrochemical results were used to calculate the degree of surface coverage (θ). The adsorption mechanism of the three inhibitors was discussed according to the free energy of adsorption ( $$ \Delta G_{{\text{ads}}}^{\circ } $$ ) value obtained from Temkin adsorption isotherm, this being the best way to quantitatively express the adsorption process of their molecules on carbon steel surface. Thus, a mixed type mechanism involving the synergism between physisorption and chemisorption was proposed. The thermal analysis curves showed that, for the occurred events up to 470 °C, mass losses take place with endothermic effects followed by the total oxidation of the residue with an exothermic effect around 520 °C. Consequently, their effectiveness follows the order: BTD > NCBSA ≥ MBT, while the thermal stability ranges as follows: NCBSA < BTD ≤ MBT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.