Abstract
In this work, the effect of hexyl branch content on thermal behavior of a fractionated ethylene/1-octene copolymer with emphasis on high temperatures was investigated. The ethylene/1-octene copolymer was carefully fractionated to different fractions with homogenous hexyl branch (HB) content by preparative temperature rising elution fractionation (P-TREF) method. The P-TREF fractions were thermally analyzed via differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and evolved gas analysis (EGA). The P-TREF profile showed a short chain branch distribution (SCBD) of around 1.24. A linear relationship between P-TREF elution temperature (ET) and methylene sequence length (MSL) was presented. The DSC curves exhibited a monolithically increase in melting temperature (Tm) as well as crystallization temperature (Tc) by decreasing short chain branch (SCB) content. The calculated values of lamellae thickness suggested a linear function of SCB content and Tm. The TGA studies of P-TREF fractions depicted a two-stage thermal degradation behavior: pre-degradation and main degradation stages. Tmax for both pre-degradation and main degradation stages was increased for fractions with less hexyl branch content. As an interesting point the pre-degradation stage was found more intensified for more linear fractions. The concentration of main products was found to be affected by the content of hexyl branches using Py-GC-MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.