Abstract

Purpose The aim of this work is to determine the average surface temperature of a conical antenna. Its cooling is ensured by means of a nanofluid-saturated porous structure. The volume fraction of the H2O–Cu nanofluid ranges between 0% (pure water) and 5%, whereas the ratio between the thermal conductivity of the used porous materials and that of water (fluid base) varies in the wide 4–41.2 range. The antenna is contained in a coaxial conical closed cavity with a variable distance between the cones, leading to an aspect ratio varying between 0.2 and 0.6. The axis of the assembly is also inclined with respect to the gravity field by an angle varying between 0° (a vertical axis with top of the cone oriented upwards) and 180° (a vertical axis with top of the cone oriented downwards). Design/methodology/approach Simulations have been done by means of the volume control method based on the SIMPLE algorithm. Findings Results of the numerical approach show that the cavity’s aspect ratio and inclination with respect to the gravity field significantly affect the thermal behavior of the active cone. Otherwise, the work confirms that the Maxwell and Brinkman models used to determine the nanofluid’s effective thermal conductivity and viscosity, respectively, are adapted to the considered assembly. Originality/value A new correlation is proposed, allowing the determination of the average surface temperature of the active cone and its correct thermal sizing. This correlation could be used in various engineering fields, including electronics, examined in the present study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.