Abstract
Heat removal capabilities and radiation performances of several sparse antenna array topologies are studied for cooling enhancement in 5G millimeter-wave base station antennas. Both electromagnetic (EM) and thermal aspects are jointly considered for the first time in array layout optimization, and a novel connection between layout sparsity and thermal management is presented. Two types of active electronically scanned arrays (AESAs), based on the traditional and planar approaches, are examined. Thermal management in AESAs is discussed, with a focus on cooling challenges at millimeter waves. Being relatively low cost and low profile while supporting flexible beamforming, passively cooled planar AESAs with fanless CPU coolers are proposed, for the first time, to be used in 5G base stations. Additional cooling for such arrays is achieved by increasing the inter-element distances in the layout. Linear irregular arrays, spiral arrays, thinned arrays, circular ring arrays, and heat sink antenna arrays are revisited with a critical discussion on their EM and thermal performance. The results are compared with regular and square layouts that are used as benchmarks throughout this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.