Abstract
The thermal properties of two conventional polyester-based toners and a chemically prepared styrene/acrylate toner with different thermal histories were studied by scanning probe microscopy (SPM) and differential scanning calorimetry (DSC). The thermal transition temperatures detected by SPM agreed with the results of the DSC measurements. The validity of SPM for detecting thermal transitions was further confirmed by studying two amorphous reference polymers with different glass transition points ( T g) and three crystalline reference polymers with different melting points ( T m). When the toner sample was heated by the SPM probe above the glass transition temperature of the toner powder ( T probe > T g), changes occurred in the surface topography and roughness causing different levels of local sintering of the particles. A set of roughness parameters calculated from the SPM image data were used to quantify the most essential features of toner surfaces. Environmental scanning electron microscopy (ESEM) was used to study the penetration depth of heat dissipated by the SPM probe. The probe-annealing was compared with oven-annealing in order to establish the effect of thermal history on the thermal properties of the materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.