Abstract
In the present study, an analytical and RSM (response surface methodology) combined approach has been applied to investigate the thermal and thermohydraulic performances of a novel type double pass packed bed solar air heater under external recycle with wire mesh screen as a packed bed material. An analytical model describing the various temperatures and heat transfer characteristics of such a double pass packed bed solar air heater under external recycle has been developed and employed to study the effects of mass flow rate, recycle ratio and varying channel depth between the top (upper and lower) glass covers for a fixed 95% porosity of the packed material on its thermal and thermohydraulic performances. The analytical model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass transfer involved. Furthermore, RSM is then applied for developing mathematical models based on simulation results obtained from analytical study. The effect of parameters and their interactions on the responses are studied using RSM. The results obtained from RSM revealed that proposed mathematical model is significant and good agreement is achieved with reasonable accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.