Abstract
Twisted magnetic fields should be ubiquitous in flare-producing active regions where the magnetic fields are strongly non-potential. It has been shown that reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops. This scenario can be an alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. We use a combination of MHD simulations and test-particle methods, which describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us estimate thermal X-ray emission intensities. The electric and magnetic fields obtained are used to calculate electron trajectories using the guiding-centre approximation. These trajectories combined with the MHD plasma density distributions let us deduce synthetic HXR bremsstrahlung intensities. Our simulations emphasise that the geometry of the emission patterns produced by hot plasma in flaring twisted coronal loops can differ from the actual geometry of the underlying magnetic fields. The twist angles revealed by the emission threads (SXR) are consistently lower than the field-line twist present at the onset of the kink-instability. HXR emission due to the interaction of energetic electrons with the stratified background are concentrated at the loop foot-points in these simulations, even though the electrons are accelerated everywhere within the coronal volume of the loop. The maximum of HXR emission consistently precedes that of SXR emission, with the HXR light-curve being approximately proportional to the temporal derivative of the SXR light-curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.