Abstract

In the present work we aim to study particle acceleration in twisted coronal loops. For this purpose, an MHD model of magnetic reconnection in a linearly unstable twisted magnetic fluxtube is considered. Further, the electric and magnetic fields obtained in the MHD simulations are used to calculate proton and electron trajectories in the guiding-centre approximation. It is shown that particle acceleration in such a model is distributed rather uniformly along the coronal loop and the high-energy population remains generally neutral. It also follows from the model that the horizontal cross-section of the volume occupied by high-energy particles near the loop footpoints increases with time, which can be used as an observational proxy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call