Abstract
The 32Ma Grodziec nephelinite (Lower Silesia, SW Poland) contains xenolith of peridotite (mostly lherzolite) and clinopyroxenite/olivine clinopyroxenite composition. The forsterite content in olivine classifies these rocks into three groups: groups A and B consist of peridotites, while group C xenoliths are pyroxenitic cumulates. Group A xenoliths contain olivine Fo 87.90–91.8% and pyroxenes with high Mg# (~0.91–0.92); clinopyroxene is strongly LREE-enriched (LaN/LuN=2.19–17.74) and strongly impoverished in Zr, Hf and Ti relative to primitive mantle. The group B xenoliths (dunites and wehrlite) are orthopyroxene-free, olivine and clinopyroxene are less magnesian than those in the A group (Fo=85.2–87.2%, Mg#=0.86–0.88), clinopyroxene is less LREE-enriched (LaN/LuN=4.07–4.15) and only slightly impoverished in Zr, Hf and Ti. Group C xenoliths contain olivine with forsterite content from 78.6 to 86.6% and clinopyroxene of Mg# from 0.84 to 0.85, with LREE/trace element characteristics similar to those of B group (LaN/LuN=1.96–3.10).Group A xenoliths from Grodziec record migration of mixed carbonatite-alkaline silicate melts through the subcontinental lithospheric mantle beneath Lower Silesia, which preceded the migration of melts similar to the Grodziec nephelinite. The peridotitic protoliths were dunitized at the direct contacts with the migrating nephelinite melt and are now represented by group B. Group C pyroxenites originated in mantle conditions by crystal settling in places of transient nephelinite melt stagnation. The mantle section beneath Grodziec was reheated to ca 1000–1100°C. The Grodziec scenario is similar to that of Księginki (northern extension of Eger Rift, SW Poland), which shares a similar age of xenolith entrainment. Both sites show that the processes of mantle metasomatism and thermal rejuvenation of subcontinental lithospheric mantle were more intense during the Lower Oligocene volcanic climax compared to those recorded in younger (ca 20Ma) xenolith suites from Lower Silesia.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have