Abstract

Polymerization of a ternary system containing polysulfide (PS), as a liquid elastomer, diglycidylether of bisphenol A resin, and phthalic anhydride was conducted using “design of experiment” technique. The polymerization progress with respect to concentration variations of components were studied by Fourier transform infrared spectroscopy. Fourier transform infrared spectroscopy studies showed that the anhydride plays a decisive role in curing reaction so that, in its absence, the epoxy/PS mixture becomes gel in about 2 hr, whereas, by addition of the anhydride, the pot life of the system can be extended to 48 hr. The cured samples were investigated by thermal gravimetry analysis and differential scanning calorimetry to evaluate thermal properties. Thermal gravimetry analysis and differential scanning calorimetry results indicated that two different soft and hard segments are formed, which have different thermal decompositions. The soft segment consists of loose etheric bonds, which are attributed to PS, and the hard segment is formed during the etherification and esterification reactions of the epoxy resin. Tensile strength test was performed to investigate the mechanical properties of PS/epoxy/anhydride-cured systems. The results showed that the tensile strength, elongation-at-break, and the fracture energy of specimens are essentially dependent on PS/anhydride ratios. Two different segments impart high strength and ductility simultaneously. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.