Abstract

AbstractThe ethylene methyl acrylate copolymer (EMA) and multiwalled carbon nanotube (MWNT) based composites were prepared by solution mixing as well as by melt processing of the films obtained after solution mixing. Field emission scanning electron microscopy, transmission electron microscopy, and XRD were used to characterize morphologies of various composites. MWNTs were found to be more dispersed in the composites prepared by melt process after solution process. There was no obvious agglomeration of MWNTs at lower % loading (up to 2.5%) in the polymer matrices especially the composites are prepared solution plus melt mixing and consequently better interaction between MWNTs and EMA matrix was anticipated. XRD and differential scanning calorimetry studied showed that the nanotubes affect the crystallization process and subsequently their role as a nucleating agent was established. These are reflected in the mechanical properties of the composites. Dynamic mechanical analysis showed that the storage modulus of the composites drop very sharply beyond 2.5 wt% of MWNT content with increasing % strain and it reflects the Payne effect (a substantial decrease in the storage modulus of a particle‐reinforced polymer with an increase in the amplitude of dynamic oscillations). The influence of concentration of filler was also realized by frequency sweep experiment. The incorporation of MWNTs in EMA offered a stabilizing effect since onset of degradation occurs at higher temperatures for composites. POLYM. COMPOS., 31:1168–1178, 2010. © 2009 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.