Abstract

Abstract The Taguchi optimization method was used to optimize waste and natural different components such as waste marble dust, expanded perlite, perlite aggregate size, cement, and molten tragacanth in the production of new insulation composite material. Compressive strength, thermal conductivity, abrasion loss, and water adsorption properties of the developed composite material were investigated. Taguchi’s standard L18 array was chosen for optimization of these four components with different levels. Response plots were created using the Taguchi and the optimum test condition was determined. The insulation composite material with the best thermal and mechanical properties was obtained under the condition of waste marble dust (1), expanded perlite (1), perlite aggregate size (1) and molten tragacanth (1). In addition, using the anova (Analysis of Variance), percentage impacts on the mechanical and thermal properties of the test parameters were determined. Statistical values obtained from anova and mathematical models are developed by using multi-linear regression method. It was found that the mathematical model and the experimental results were quite compatible. The optimum test conditions detected were verified by confirmation experiments. Confirmation experiment results were obtained between 99.9 % confidence interval values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call