Abstract

We propose a substrate-free focal plane array (FPA) in this paper. The solid substrate is completely removed, and the microcantilevers extend from a supporting frame. Using finite element analysis, the thermal and mechanical characterizations of the substrate-free FPA are presented. Because of the large decrease in thermal conductance, the supporting frame is temperature dependent, which brings out a unique feature: the lower the thermal conductance of the supporting frame is, the higher the energy conversion efficiency in the substrate-free FPA will be. The results from the finite element analyses are consistent with our measurements: two types of substrate-free FPAs with pixel sizes of 200×200 and 60×60 μm2 are implemented in the proposed infrared detector. The noise equivalent temperature difference (NETD) values are experimentally measured to be 520 and 300 mK respectively. Further refinements are considered in various aspects, and the substrate-free FPA with a pixel size of 30×30 μm2 has a potential of achieving an NETD value of 10 mK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call