Abstract
In this study, the relationship between microstructural evolution and mechanical properties of thermal barrier coatings (TBCs) has been investigated through different thermal fatigue systems, electric thermal fatigue (ETF) and flame thermal fatigue (FTF), including the thermal stability through the interface between the bond and top coats. The TBC system with the thicknesses of 300 µm in both the top and bond coats was prepared with METCO 204 NS and AMDRY 962, respectively, with the air plasma spray (APS) system using 9MB gun. To observe the oxidation resistance and thermal stability of TBC, the thermal exposure tests were performed with both thermal fatigue tests at a surface temperature of 850 °C with a temperature difference of 200 °C between the surface and bottom of sample, for 12,000 EOH in designed apparatuses. The hardness values are slightly increased due to the densification of top coat with increasing the thermal exposure time in both thermal fatigue tests. The influence of thermal fatigue condition on the microstructural evolution and interfacial stability of TBC is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have