Abstract

ZnO thin films were deposited using atom beam sputtering and their modifications have been shown by two processes: (a) thermal annealing of ZnO thin films in oxygen and (b) athermal annealing by irradiation of these films by swift heavy ions (SHIs) in a high vacuum chamber. The as-deposited films showed the nanocrystalline nature with a preferred orientation along the c-axis of the hexagonal structure as revealed by x-ray diffraction (XRD) and Raman spectra. The influence of the thermal annealing and athermal annealing on the structural and surface modifications of these thin films were investigated. XRD and Raman spectroscopy confirmed the improvement in the crystallinity of ZnO thin film by both thermal annealing and SHI irradiation. The Zn–O bonding was confirmed by Fourier transform infrared spectroscopy and the interpretation of IR spectra corroborated the XRD and Raman results. Surface morphology was investigated by atomic force microscopy. The AFM study of the films implied no significant change in the roughness of the films in both types of annealing conditions. It was concluded that the modification of nanocrystalline ZnO thin film could be possible by both thermal and athermal annealing. Results indicate that transient annealing by SHI irradiation induces the highly textured c-axis oriented ZnO thin film for device applications, comparable to those of high temperature annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.