Abstract

AbstractThe effect of the weight fraction of NaA zeolite on thermal properties (specific heat capacity, thermal diffusivity, thermal conductivity) and dielectric properties (electrical conductivity, real and imaginary electric permittivity) of composites based on low‐density polyethylene (LDPE) and NaA zeolite is examined. Composite samples containing from 5 to 30 wt% zeolite are prepared using the compression molding technique. The degree of dispersion and the weight fraction of filler in the LDPE/NaA zeolite composites are determined using X‐ray diffraction. A linear decrease in the values of the specific heat capacity with an increase in the weight fraction of zeolite is observed using differential scanning calorimetry. The laser flash method is used to determine the thermal diffusivity of the composites. An increase in effective thermal diffusivity and abrupt increase in the range from 15 to 20 wt% of zeolite are established. It is demonstrated that effective thermal conductivity increases with an increase in the weight fraction of zeolite, and an abrupt increase in the range from 15 to 20 wt% is observed. Dielectric spectroscopy measurements are performed to determine the real and imaginary parts of permittivity. An increase of real and imaginary parts of permittivity of LDPE/NaA zeolite composites, with increasing weight fraction of zeolite, is established. Two relaxation peaks of the imaginary parts of permittivity of LDPE/NaA zeolite composites are detected. An increase of electrical conductivity with increasing weight fraction of zeolite and abrupt increase in the range 15 to 20 wt% are noticed. © 2021 Society of Industrial Chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.