Abstract
Recently, we proposed a fabrication technology to realize fluidic channels at the surface of a silicon wafer [1]. The channels have semi-circular cross section and a flat top so that low hydraulic resistance is combined with easy integration of actuation and readout structures. In this paper we present a number of flow sensors that have successfully been realized using this technology. Thermal flow sensors were realized in which heating resistors and thermopile sensors were integrated on top of freely suspended channels. With these sensors, a resolution in the order of nl/min can be achieved. Furthermore, Coriolis type flow sensors have been realized in which a freely suspended channel is brought into vibration so that the moving fluid experiences Coriolis forces. The Coriolis forces excite another vibration mode which can be detected optically or capacitively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.