Abstract
Thermal spraying consists in a technology aiming at producing coatings whose thicknesses range from 10 μm to a few millimeters onto mechanical components to confer them specific and unique functional properties, such as wear and corrosion resistances, friction coefficient adaptation, thermal and electrical insulation, biocompatibility, repair, etc., among the principals. Thermal spraying consists in injecting in a viscous enthalpic jet (animated by a momentum) powder with particles which average size ranges from 0.01 to 100 μm. These particles are melted and simultaneously accelerated towards the surface of the part to be covered. They form, after impact, spreading and solidification, near-circular lamellae the stacking of which form the coating. Due to the versatility of the available processes exhibiting a wide range of enthalpic and momentum contents, virtually any kind of material exhibiting congruent melting behavior can be processed, from alloys and ceramics to polymers, ever since its melting temperature differs from its vaporization or decomposition temperature by at least 300 K and that it can be processed previously under the form of powder particles or wires. Thermal spray techniques offer the unique capability to manufacture a large variety of coatings on components of a large variety and geometry. However, thermal spraying constitutes a special process for which the coating service properties derive mostly from the structure and indirectly from the selection of the operating parameters. Very significant improvements over the past years permitted to diagnose the in-flight particle characteristics, mostly in terms of velocity and temperature. Recently, these new capabilities have made possible the development of on-line process controls. This should participate to a drastic increase in coating reliability. In convetntional thermal spraying processes, a pulverulent feedstock (i.e., powder particles) is injected within the plasma jet via a carrier gas. This approach does not permit to process small diameter particles; i.e., nano-sized particles, which could permit to form finely grained coatings. Replacing gas by liquid to carry particles offer the unique possibility to process nano-sized particles. Cold gas spraying may appear as an alternative process to reach the same goal. Indeed, thermal spray processes experienced very significant developments over the past years, opening new doors to manufacture coatings with a high reliability and superior properties. This papepr indend at presenting some of those developments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.