Abstract
During the atmospheric entry phase, the physico-chemical phenomena taking place on space shuttle walls can lead to an important excess of heating and damage of the protective materials. The aim of this work is the study of the catalytic recombination of atomic oxygen under plasma conditions chosen to simulate the atmospheric reentry. To do that, we have developed an experimental set-up MESOX (Moyen d'Essai Solaire d'OXydation), which associates a solar radiation concentrator and a microwave generator to reach high temperature, low enthalpy flow and low pressure plasma with an air gas flow. The study of atomic oxygen recombination on silicon- or aluminum-based ceramic materials, at high temperature (1000–1800 K) has been done for different pressures (200–2000 Pa) by a thermal and a chemical understanding. The results give a catalycity scale of materials (thermal recombination flux, q rec, and coefficient of atomic oxygen recombination, γ). The catalycity activity is weak for the sintered SiC target with atomic oxygen recombination flux reaching 35 kW/m 2, however, for a target of sintered Al 2O 3, catalytic effect is obtained with energy fluxes between 90 to 180 kW/m 2. The recombination coefficient γ confirms the catalycity scale of these ceramic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.