Abstract
Deposit buildup and fuel entrapment due to amorphous carbon are relevant issues in fusion devices with carbon based plasma facing components. Neutral atomic species play a significant role – atomic hydrogen facilitates the formation of amorphous carbon while atomic oxygen could be used to remove carbon deposits. The kinetics of either reaction depends on the density of neutral species, which in turn is influenced by recombination on the vessel walls. In this work, we measured the probability of heterogeneous recombination of atomic hydrogen and oxygen on amorphous carbon deposits. The recombination coefficients were determined by observing density profiles of atomic species in a closed side-arm of a plasma vessel with amorphous carbon deposit-lined walls. Density profiles were measured with fiber optics catalytic probes. The source of atomic species was inductively coupled radiofrequency plasma. The measured recombination coefficient values were of the order of 10−3 for both species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.