Abstract

We report the synthesis of three (3) linear triblock terpolymers, two (2) of the ABC type and one (1) of the BAC type, where A, B and C correspond to three chemically incompatible blocks such as polystyrene (PS), poly(butadiene) of exclusively (~100% vinyl-type) -1,2 microstructure (PB1,2) and poly(dimethylsiloxane) (PDMS) respectively. Living anionic polymerization enabled the synthesis of narrowly dispersed terpolymers with low average molecular weights and different composition ratios, as verified by multiple molecular characterization techniques. To evaluate their self-assembly behavior, transmission electron microscopy and small-angle X-ray scattering experiments were conducted, indicating the effect of asymmetric compositions and interactions as well as inversed segment sequence on the adopted morphologies. Furthermore, post-polymerization chemical modification reactions such as hydroboration and oxidation were carried out on the extremely low molecular weight PB1,2 in all three terpolymer samples. To justify the successful incorporation of -OH groups in the polydiene segments and the preparation of polymeric brushes, various molecular, thermal, and surface analysis measurements were carried out. The synthesis and chemical modification reactions on such triblock terpolymers are performed for the first time to the best of our knowledge and constitute a promising route to design polymers for nanotechnology applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.