Abstract

In this paper, the formation of nanostructured triblock terpolymer polystyrene-b-poly(4-vinylpyridine)-b-poly(solketal methacrylate) (PS-b-P4VP-b-PSMA), polystyrene-b-poly(4-vinylpyridine)-b-poly(glyceryl methacrylate) (PS-b-P4VP-b-PGMA) membranes via block copolymer self-assembly followed by non-solvent-induced phase separation (SNIPS) is demonstrated. An increase in the hydrophilicity was observed after treatment of non-charged isoporous membranes from PS-b-P4VP-b-PSMA, through acidic hydrolysis of the hydrophobic poly(solketal methacrylate) PSMA block into a hydrophilic poly(glyceryl methacrylate) PGMA block, which contains two neighbored hydroxyl (–OH) groups per repeating unit. For the first time, PS-b-P4VP-b-PSMA triblock terpolymers with varying compositions were successfully synthesized by sequential living anionic polymerization. Composite membranes of PS-b-P4VP-b-PSMA and PS-b-P4VP-b-PGMA triblock terpolymers with ordered hexagonally packed cylindrical pores were developed. The morphology of the membranes was studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM). PS-b-P4VP-b-PSMA triblock terpolymer membranes were further treated with acid (1 M HCl) to get polystyrene-b-poly(4-vinylpyridine)-b-poly(glyceryl methacrylate) (PS-b-P4VP-b-PGMA). Notably, the pristine porous membrane structure could be maintained even after acidic hydrolysis. It was found that membranes containing hydroxyl groups (PS-b-P4VP-b-PGMA) show a stable and higher water permeance than membranes without hydroxyl groups (PS-b-P4VP-b-PSMA), what is due to the increase in hydrophilicity. The membrane properties were analyzed further by contact angle, protein retention, and adsorption measurements.

Highlights

  • Block copolymers have been demonstrated as promising precursors for the fabrication of highly ordered nanoporous structures

  • It was found that membranes containing hydroxyl groups (PS-b-P4VP-b-PGMA) show a stable and higher water permeance than membranes without hydroxyl groups (PS-b-P4VP-b-PSMA), what is due to the increase in hydrophilicity

  • Triblock terpolymers are exciting materials to explore for membrane applications because of their extended possibilities to tune their properties compared to diblock copolymers

Read more

Summary

Introduction

Block copolymers have been demonstrated as promising precursors for the fabrication of highly ordered nanoporous structures. One of the ubiquitous features of block copolymers is their ability to form a plethora of nanoscale ordered structures. Polymers 2020, 12, 41 solution is influenced by the interaction of the blocks among themselves, as well as the interactions of the blocks with the solvent or solvent mixture, which is more complex in case of triblock terpolymers compared to diblock copolymers. Triblock terpolymers are exciting materials to explore for membrane applications because of their extended possibilities to tune their properties compared to diblock copolymers. Properties of block copolymers for specific applications can be tailored by the introduction of functional components and subsequent chemical modification [15,16,17,18]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call