Abstract

Over the past few decades, increased demand of highly sophisticated real-time applications with complex functionalities has directly led to exponentially increased power consumption and significantly elevated system temperatures. These elevated temperature and thermal variations present formidable challenges towards system reliability, performance, cooling cost and leakages. This article explores the thermal management strength of two fairness based algorithms, namely Proportional Fair (PFair) and Deadline Partitioning Fair (DP-Fair). In related literature, the introduction of fairness is often considered as a tool to achieve optimality in multiprocessor scheduling algorithms. This work shows that these algorithms bring about better thermal profile when compared with the commonly used Earliest Deadline First (EDF) algorithm in similar conditions both in uniprocessor and multiprocessor environments. A simulation is conducted for periodic task set model. The obtained results are encouraging and show that use of fairness based algorithms reduces the operating temperature, peak temperature, and thermal variations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.