Abstract

The present work investigates the behaviour of geothermal energy piles in sand subjected to thermal loading and the resulting soil-structure interaction, numerically using the finite element software Abaqus and user-defined material subroutines for soil. The stress-strain response of sand has been simulated using CASM constitutive model based on critical-state soil mechanics. Detailed parametric sensitivity studies have been carried out to understand the effects of different end conditions of the pile, relative densities of the soil, coefficients of lateral earth pressure of the ground, lengths and diameters of the pile, thermal loads, coefficients of friction at the pile-soil interface, critical-state friction angles of soil, thermal conductivity of soil, specific heat of soil and thermal conductivity of the pile on the stress response of soil, deformation of the pile and soil, and strains in the pile. The results show that negative shear stress is generated in the soil at the pile-soil interface. In the pile with both ends restrained the lateral earth pressure coefficient in soil increases due to high radial strain generation. Moreover, the lateral earth pressure coefficient in soil increases with the increase in the thermal load, the coefficient of friction at the pile-soil interface and the critical-state friction angle of the soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.