Abstract

Gentle thermolysis of the allyl complex, CpW(NO)(CH(2)CMe(3))(eta(3)-H(2)CCHCMe(2)) (1), at 50 degrees C in neat hydrocarbon solutions results in the loss of neopentane and the generation of transient intermediates that subsequently activate solvent C-H bonds. Thus, thermal reactions of 1 with tetramethylsilane, mesitylene, and benzene effect single C-H activations and lead to the exclusive formation of CpW(NO)(CH(2)SiMe(3))(eta(3)-H(2)CCHCMe(2)) (2), CpW(NO)(CH(2)C(6)H(3)-3,5-Me(2))(eta(3)-H(2)CCHCMe(2)) (3), and CpW(NO)(C(6)H(5))(eta(3)-H(2)CCHCMe(2)) (4), respectively. The products of reactions of 1 with other methyl-substituted arenes indicate an inherent preference of the system for the activation of stronger arene sp(2) C-H bonds. For example, C-H bond activation of p-xylene leads to the formation of CpW(NO)(CH(2)C(6)H(4)-4-Me)(eta(3)-H(2)CCHCMe(2)) (5) (26%) and CpW(NO)(C(6)H(3)-2,5-Me(2))(eta(3)-H(2)CCHCMe(2)) (6) (74%). Mechanistic and labeling studies indicate that the transient C-H-activating intermediates are the allene complex, CpW(NO)(eta(2)-H(2)C=C=CMe(2)) (A), and the eta(2)-diene complex, CpW(NO)(eta(2)-H(2)C=CHC(Me)=CH(2)) (B). Intermediates A and B react with cyclohexene to form CpW(NO)(eta(3)-CH(2)C(2-cyclohexenyl)CMe(2))(H) (18) and CpW(NO)(eta(3)-CH(2)CHC)(Me)CH(2)C(beta)H(C(4)H(8))C(alpha)H (19), respectively, and intermediate A can be isolated as its PMe(3) adduct, CpW(NO)(PMe(3))(eta(2)-H(2)C=C=CMe(2)) (20). Interestingly, thermal reaction of 1 with 2,3-dimethylbut-2-ene results in the formation of a species that undergoes eta(3) --> eta(1) isomerization of the dimethylallyl ligand following the initial C-H bond-activating step to yield CpW(NO)(eta(3)-CMe(2)CMeCH(2))(eta(1)-CH(2)CHCMe(2)) (21). Thermolyses of 1 in alkane solvents afford allyl hydride complexes resulting from three successive C-H bond-activation reactions. For instance, 1 in cyclohexane converts to CpW(NO)(eta(3)-C(6)H(9))(H) (22) with dimethylpropylcyclohexane being formed as a byproduct, and in methylcyclohexane it forms the two isomeric complexes, CpW(NO)(eta(3)-C(7)H(11))(H) (23a,b). All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 2, 3, 4, 18, 19, 20, and 21 have been established by X-ray crystallographic analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call