Abstract

The thermal stability and reactive atomic oxygen (AO) resistance of polyhedral oligomeric silsesquioxane (POSS)-reinforced polymer nanocomposites have attracted significant interest from both experimental and theoretical researchers. However, understanding the damage-mitigation mechanism of inorganic core constituents in POSS hybrids is still limited due to the lack of empirical insights. In this study, the ablation resistance of polyimide (PI)/POSS nanocomposites was examined using reactive molecular dynamics and first-principles calculations in terms of physicochemical changes in the POSS cage structure. According to the AO collision kinetic energy and frequency level, the origin of ablation resistance in the system is classified. Each damage-mitigation behavior is strongly correlated with the normalized residue mass and byproduct distribution during the erosion of the surface. In particular, the results suggest that the kinematic collapse of POSS prevents the exfoliation of large carbonic molecules and plays a crucial role in the formation of a ceramic passivation layer, which significantly improves the damage-mitigation effect. Therefore, this study provides a new perspective on the design of ablative thermal protection systems by understanding the behavior of the inorganic nanocage constituting POSS hybrids at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.