Abstract

IntroductionThe basic paradigm of rehabilitation is based on the brain plasticity, and for promoting it, test–retest reliability (TRR) of brain activation in which certain area of the brain is repeatedly activated is required. In this study, we investigated whether the robotic passive movement has the TRR of brain activation. While active training has been shown to have TRR, but there still have been arguments over the TRR by passive movement.MethodsIn order to test TRR, 10 repetitive sessions and various intervals (1 day, 3 days, 7 days, 23 days, 15 min, and 6 hr) were applied to five subjects, which had the same statistical power as applying two sessions to 50 subjects. In each session, three robot speeds (0.25, 0.5, and 0.75 Hz) were applied to provide passive movement using the robot. The fNIRS signal (oxy‐Hb) generated in the primary sensorimotor area (SM1) was measured on a total of 29 channels. At this time, we used activation maps and intraclass correlation coefficient (ICC) values to examine the TRR and the effect of robot speeds and intervals on TRR.ResultsAs a result, activation maps showed prominent variation regardless of robot speeds and interval, and the ICC value (=0.002) showed no TRR of brain activation for robotic passive movement.ConclusionThe brain activation induced by the robotic passive movement alone has very poor TRR, suggesting that further enhancement is required to strengthen the TRR by complementing active user engagements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.