Abstract
Therapy related myeloid neoplasms (t-MN) including therapy related myelodysplastic syndromes (t-MDS) and acute myeloid leukemia (t-AML) are associated with aggressive disease biologies and poor outcomes. In this large (n = 497) and informative (inclusive of molecular and cytogenetic information) chronic myelomonocytic leukemia (CMML) patient cohort, we demonstrate key biological insights and an independent prognostic impact for t-CMML. T-CMML was diagnosed in 9% of patients and occurred approximately 7 years after exposure to prior chemotherapy and/or radiation therapy. In comparison to de novo CMML, t-CMML patients had higher LDH levels, higher frequency of karyotypic abnormalities and had higher risk cytogenetic stratification. There were no differences in the distribution of gene mutations and unlike t-MDS/AML, balanced chromosomal translocations, abnormalities of chromosome 11q23 (1%) and Tp53 mutations (<2%) were uncommon. Molecularly integrated CMML prognostic models were not effective in risk stratifying t-CMML patients and responses to hypomethylating agents were dismal with no complete responses. Median overall (OS) and leukemia free survival (LFS) was shorter for t-CMML in comparison to d-CMML (Median OS 10.9 vs 26 months and median LFS 50 vs 127 months) and t-CMML independently and adversely impacted OS (P = .0001 HR 2.1 95% CI 1.4-3.0). This prognostic impact was retained in the context of the Mayo Molecular Model (P = .001, HR 2.4, 95% CI 1.5-3.7) and the GFM prognostic model (P < .0001, HR 2.15, 95% CI 1.5-3.7). In summary, we highlight the unique genetics and independent prognostic impact of t-CMML, warranting its inclusion as a separate entity in the classification schema for both CMML and t-MN.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have