Abstract

In this study, oxygenated triarylmethyl (oxTAM) is investigated by DFT calculations as a drug carrier framework for Nitrosourea (NU) and Fluorouracil (FU) drugs. Based on the adsorption analysis i.e., energies and distances between interacting atoms, it is found that oxTAM exhibits excellent carrier abilities for the delivery of FU (−1.53 eV & 2.00 Å) and NU (−1.33 eV & 2.12 Å) drugs. NCI and QTAIM results indicate the presence of hydrogen bonding in drug-carrier complexes. The values of dipole moment and global chemical descriptors show the significant reactivity of oxTAM for NU and FU drugs. Based on electronic property analysis, FU@oxTAM has a higher adsorption trend for complexation with oxTAM as compared to NU@oxTAM. Moreover, FU can easily release from the carrier due to the decreasing adsorption stability after protonation under an acidic environment as well as a short recovery time observed for the oxTAM carrier surface. Keeping in view all the above parameters, we inferred that oxTAM can serve as a potential drug delivery system for anticancer drugs including, Nitrosourea and Fluorouracil drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call