Abstract

The reactivity and mechanistic intricacies of azatrienes in Diels-Alder reactions have been relatively unexplored despite their intriguing potential applications. In this study, we employ Molecular Electron Density Theory to theoretically investigate the hetero-Diels–Alder reaction involving azatrienes with ethyl vinyl ether and allenyl methyl ether. Analysis of Conceptual Density Functional Theory, energetic profiles, and the topological characteristics is conducted to elucidate the reactions. The revealed mechanism manifests as a polar one-step two-stages process under kinetic control. We establish a clear relationship of between the periselectivity, regioselectivity, and stereoselectivity on one hand and the characteristics of the reactions mechanism on the other hand. The influence of weak interactions on reaction activation barriers and bonding evolution are discussed in detail. We demonstrate that substituents enhancing the reverse electron density flux facilitate the feasibility of the reactions. The results lay ground for a meticulous control of the reaction of azatriene in similar synthetic scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.