Abstract
Improvements in the understanding of human genetics and its roles in disease development and prevention have led to an increased interest in therapeutic genome editing via the use of engineered nucleases. Various approaches have been explored in the past focusing on the development of an effective and safe system for sequence-specific editing. Compared to earlier nucleases such as zinc finger nuclease and transcription activator-like effector nuclease, the relatively low cost and ease of producing clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas9) systems have made therapeutic genome editing significantly more feasible. CRISPR/Cas9 genome editing has shown great potential to correct genetic mutations implicated in monogenic diseases and to eradicate latent or chronic viral infections in preclinical studies. Several CRISPR/Cas9-based therapeutics have reached the clinical stage, including treatments for inherited red blood cell disorders and Leber Congenital Amaurosis 10, as well as CRISPR/Cas9-edited T cells designed to target and destroy cancer cells. Further advances in therapeutic genome editing will rely on a safe and more efficient method of in vivo CRISPR/Cas9 delivery and improved efficiency of homology-directed repair for site-specific gene insertion or replacement. While other reviews have focused on one or two aspects of CRISPR/Cas9 genome editing, this review aims to provide a summary of the mechanisms of genome editing, the reasons for the emerging interest in CRISPR/Cas9 compared to other engineered nucleases, the current progress in developing CRISPR/Cas9 delivery systems, and the current preclinical and clinical applications of CRISPR/Cas9 genome editing.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have