Abstract

Objective The main purpose of this study was to elucidate the anti-apoptotic effects of curculigoside (CUR) on ovarian granulosa cells (GCs) in a mouse model of cyclophosphamide (CTX)-induced premature ovarian failure (POF). Method Intraperitoneal injection of CTX (100 mg/kg body weight) induced POF in mice. Thirty-six female mice were divided into six groups: blank group; POF model group; low-dose CUR group; medium-dose CUR group; high-dose CUR group; and estradiol benzoate group. Mice were orally administered for 28 consecutive days. Twenty-four hours after the completion of treatment, mice were weighed and euthanized, and blood was collected from the eyeball under anesthesia. The ovaries were surgically separated and weighed, and the ovarian index was calculated. Hematoxylin–eosin (HE) staining was used to observe follicular development and corpus luteum morphology in the ovaries. Serum levels of follicle stimulating hormone (FSH), anti-Müllerian hormone (AMH) and estradiol (E2) were measured. Superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) content and malondialdehyde (MDA) levels in ovarian tissue were determined. The GC apoptosis level was measured. Western blotting was used to detect protein expression levels of Beclin-1, LC3, P62, AKT, p-AKT, mTOR and p-mTOR in the ovaries. Results The results showed that CUR can improve body weight and ovarian index; promote follicular development and reduce follicular atresia; improve FSH, AMH and E2 levels; downregulate MDA levels and restore antioxidant enzyme activity; inhibit the autophagy level; activate the AKT/mTOR signaling pathway; and alleviate GC apoptosis. Conclusion CUR improves POF by activating the AKT/mTOR signaling pathway, inhibiting autophagy and alleviating GC apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call