Abstract

Hericium erinaceus (HE) is an edible and medicinal mushroom traditionally used for the treatment of gastric injury in clinical practice. However, scientific evidence of its pharmacological activities has not yet been revealed. This study was designed to investigate the therapeutic effect of HE mycelia in submerged culture on ethanol-induced chronic gastric injury (ECGI) in mice. Gastric injury model was induced by ethanol with chronic and binge ethanol feeding in mice, and then mice were treated with HE mycelia. The stomachs were removed for histopathological examination and inflammatory cytokines measurement. Meanwhile, total proteins of gastric tissue were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling analysis to quantitatively identify differentially expressed proteins (DEPs) in three groups of animals. Bioinformatics analysis of DEPs was conducted through clustering analysis, Venn analysis, Gene Ontology (GO) annotation enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment. The histopathologic characteristics and biochemical data showed that HE mycelia (0.5 and 1.0 g/kg) exhibited therapeutic effects on the ECGI mice. Based on the results of iTRAQ analysis, a total of 308 proteins were differentially expressed in the ethanol group when compared with the control group; 205 DEPs in the high dose of HE (HEH) group when compared with control group; and 230 DEPs in HE group (1.0 g/kg) when compared with ethanol group. KEGG analysis showed that the p53 signaling pathway was closely related to the therapeutic effect of HE mycelia on ECGI. Furthermore, the expression levels of several DEPs, including keratin (KRT) 16, KRT6b and transglutaminase E (TGE), were verified by quantitative real-time polymerase chain reaction (qRT-PCR). In conclusion, H. erinaceus mycelia could relieve ethanol-induced chronic gastric injury in mice by ameliorating inflammation as well as regulating epidermal differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call