Abstract
Fibrosis is the final pathological outcome of many chronic kidney diseases and is quite common. Thus, development of effective anti-fibrotic agents is urgently needed. Although histone deacetylases (HDACs) have been reported to be involved in renal fibrosis, current HDAC inhibitors are unsatisfactory anti-fibrosis drugs. Therefore, more potentially relevant anti-renal fibrosis HDAC inhibitors are needed. We initially found that non-cytotoxic concentrations of SB939 (pracinostat) had strong anti-fibrotic activity, drastically decreasing TGF-β1-induced alpha smooth muscle actin (α-SMA) expression in the NRK renal fibroblast cell line. Similar anti-fibrotic activity of SB939 on epithelial-to-mesenchymal transition (EMT) was confirmed using the HK-2 human renal proximal tubular epithelial cell line. SB939 inhibited Smad-independent TGF-β signaling involving the MAPK and PI3K/AKT pathways. To evaluate in vivo anti-fibrotic activity, we administered SB939 in a unilateral ureteric obstruction (UUO) model. SB939 treatment markedly inhibited the accumulation of α-SMA and tissue injury. Inflammatory and pro-fibrotic cytokines in the obstructed kidney were also significantly decreased by SB939 treatment. Our results suggest that SB939 might be a promising therapeutic drug for preventing renal fibrosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have