Abstract
NIR light responsive nanoplatforms hold great promise for on-demand drug release in precision cancer medicine. However, currently available systems utilize "always-on" photothermal transducers that lack target specificity, and thus inaccurately differentiate tumors from normal tissues. Developed here is a theranostic nanoplatform featuring H2 S-mediated in situ production of NIR photothermal agents for imaging-guided and photocontrolled drug release. The system targets H2 S-rich cancers. This nanoplatform shows H2 S-activatable NIR-II emission and NIR light controllable release of the drug Camptothecin-11. Upon administering the system to HCT116 tumor-bearing mice, the tumor is greatly suppressed with minimal side effects, arising from the synergy of the cancer-specific and NIR light activated therapy. This theranostic nanoplatform thus sheds light on precision medicine with guidance through NIR-II imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.