Abstract

Light triggered theranostic (therapy and diagnostic) platforms have gained a considerable attention in recent years. In theranostics, light as an external trigger stands out due to its non-invasiveness, high local precision and temporal resolution. Many such theranostic nanoplatforms employ high-energy (visible or UV) light to initiate the individual therapeutic and diagnostic modalities. However, light at these wavelengths suffers from inherent drawbacks such as having little to no penetration in living tissue, induces autofluorescence from inherent fluorophores or chromophores in tissues and can cause photodamage. The use of NIR light for excitation mitigates such drawbacks associated with high-energy excitation, for example, little to no background autofluorescence from the specimen under investigation as well as no incurred photodamage. Moreover, one of the biggest limitations is of course, that of penetration. As such, NIR light can penetrate tissues much better than high-energy light especially when these wavelengths lie within the three biological windows (BW-I: 700-950, BW-II: 1000-1350, BW-III: 1550-1870 nm) where tissues are optically transparent. At the forefront of NIR excited nanomaterials are rare earth doped nanoparticles, which due to their 4f electronic energy states can undergo conventional (Stokes) luminescence and emit in the three NIR biological windows. However, unlike other classes of nanoparticles, they can also undergo a multiphoton excitation process where the NIR excitation light is converted to higher energies resulting in anti-Stokes luminescence spanning the UV-visible-NIR regions (commonly known as upconversion). Due to the versatility of their optical properties, it now becomes possible to generate upconverted high-energy light (UV or blue) in situ to trigger other light activated therapeutic modalities (i.e. drug release) while using the NIR emission for diagnostics (i.e. bioimaging, nanothermometry). Here, we present the synthesis of various NIR excited (and emitting) rare earth doped core/shell (and multishell) nanoparticles and demonstrate how their luminescence properties can be exploited for potential use in theranostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.