Abstract

Theranostic antibacterial wound dressing is highly recommended in practical applications. The conventional methods of integrating diagnostic and therapeutic functions have the disadvantages of complicated preparation, mutual interference, inability to effectively broad spectrum antibacterial property, and easy to induce drug-resistant bacteria. Herein, a pH and light-responsive theranostic antibacterial hydrogel is developed by biopolymers polyvinyl alcohol (PVA) and polyaniline (PANI), and cross-linking with phytic acid (PA), which is widely present in rice bran. The biological polymer-based conductive hydrogel enables timely diagnosis and photothermal sterilization in-situ for wound healing. Because PANI is highly sensitive to pH changes in the bacterial microenvironment, the hydrogel can detect bacterial infections at concentrations as low as 103 CFU/mL. Subsequently, PANI absorbs near-infrared light to achieve on-demand exothermic sterilization (under 808 nm irradiation for 20 min, the killing ratios for Staphylococcus aureus and Escherichia coli reached almost 100 %). In addition, the hydrogel can monitor the intensity of joint movement to avoid wound re-tearing sensitively. In vitro cytotoxicity and hemocompatibility experiments and in vivo full-thickness infected wound model indicate that the hydrogel has good biocompatibility, antibacterial ability, and can accelerate the wound healing effectively. This work will promote the development of wearable electronic devices and precision medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.