Abstract

A theoretical analysis is presented of the signals observed with different systems that employ the Zeeman effect for background correction in analytical atomic absorption spectrometry. Magnetic modulation of the primary source of radiation offers basically the same possibilities as the deuterium background correction system. Correction for wavelength dependent background absorption is possible only when the magnetic field is applied to the absorbing vapour. Similar expressions are obtained for constant or variable magnetic fields directed either perpendicular or parallel to the optical axis. However, mere magnetic modulation of either the source or the atomizer cannot correct for non-absorbed lines. It is demonstrated that simultaneous correction for non-absorbed lines and background absorption can be attained with a variable magnetic field applied to the atomizer, by taking measurements at three discrete, different field strengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.