Abstract
Vibrationally inelastic electron transport through a molecular bridge that is connected to two leads is investigated. The study is based on a generic model of vibrational excitation in resonant transmission of electrons through a molecular junction. Employing methods from electron-molecule scattering theory, the transmittance through the molecular bridge can be evaluated numerically exactly. The current through the junction is obtained approximately using a Landauer-type formula. Considering different parameter regimes, which include both the case of a molecular bridge that is weakly coupled to the leads, resulting in narrow resonance structures, and the opposite case of a broad resonance caused by strong interaction with the leads, we investigate the characteristic effects of coherent and dissipative vibrational motion on the electron transport. Furthermore, the validity of widely used approximations such as the wideband approximation and the restriction to elastic transport mechanisms is investigated in some detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.