Abstract

A theory of transport of long chain polymer molecules through carbon nanotube (CNT) channels is developed using the Fokker-Planck equation and direct molecular dynamics simulations. The mean transport or translocation time tau is found to depend on the chemical potential energy, the entropy, and the diffusion coefficient. A power law dependence tau approximately N2 is found, where N is the number of monomers in a molecule. For 10(5)-unit long polyethylene molecules, tau is estimated to be approximately 1 micros. The diffusion coefficient of long polymer molecules inside CNTs, like that of short ones, is found to be a few orders of magnitude larger than in ordinary silicate based zeolite systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.