Abstract
The effects of electromigration on copper in carbon nanotube (CNT) channels are investigated using molecular dynamics simulations. The study shows that the potential energy of copper and the resistive forces on copper are dependent on the shape of the CNT junction, and the increase in bias voltages magnifies these effects. Bias voltages affect the density of copper in the downstream CNT. The velocity of copper in the downstream CNT is relatively lower than that in the upstream CNT when the biased voltage is high.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have