Abstract

The semiconductor Bloch equations are solved numerically for a two-pulse photon-echo configuration. The time-dependent diffracted signal is computed and the significance of many-body effects, carrier relaxation, and dephasing is investigated in detail. Assuming femtosecond-pulse excitation at various intensities and frequencies, distinctly different results are obtained if the exciton or the continuum electron-hole-pair states are excited. It is shown that pure exciton excitation produces a free-induction decay signal and no photon echo. An echo signal is obtained only if continuum states are excited either directly by choosing the central pulse frequencies appropriately or if the band-gap renormalization is sufficiently strong to shift continuum states into resonance. A continuous transition between free-induction decay and photon-echo signal is obtained with increasing excitation amplitude. A perturbative analytical analysis of the equations allows one to identify the role of the many-body effects in producing the different features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.