Abstract

We prove that the Mott insulating state is characterized by a divergence of the electron self energy at well-defined values of momenta in the first Brillouin zone. When particle-hole symmetry is present, the divergence obtains at the momenta of the Fermi surface for the corresponding non-interacting system. Such a divergence gives rise to a surface of zeros (the Luttinger surface) of the single-particle Green function and offers a single unifying principle of Mottness from which pseudogap phenomena, spectral weight transfer, and broad spectral features emerge in doped Mott insulators. We also show that only when particle-hole symmetry is present does the volume of the zero surface equal the particle density. We identify that the general breakdown of Luttinger's theorem in a Mott insulator arises from the breakdown of a perturbative expansion for the self energy in the single-particle Green function around the non-interacting limit. A modified version of Luttinger's theorem is derived for special cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.