Abstract

Abstract Large, asymmetric atomic relaxations have been shown to play a crucial role in the structure and properties of several point defects in oxide materials. Examples include trapped hole centers in alkaline-earth oxides and E1′ and E4′ oxygen-vacancy centers and peroxy-radical defects in silicon dioxide. Schirmer's “bound small polaron” model, applied in particular to the alkaline-earth oxide defects, and model treatments of the E1′ center in SiO2 by Yip, Griscom and Fowler clearly illustrate the important spectroscopic consequences of such atomic relaxations. In fact, such effects had been incorporated in Luty's classic model of the Type II FA center in alkali halides. Edwards and Fowler have recently applied MNDO and MINDO/3 quantum-chemistry approaches to the E1′, E4′, and peroxy radical defects in SiO2. These calculations generally corroborate suggested models and bear as well on possible creation mechanisms. Large relaxation effects are likely to be important in many other defects in oxide mater...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call