Abstract
A theory of stagnation-point spray flame ignition by an isothermal hot surface is presented for the first time. A mixture of fuel droplets and air flowing against an isothermal hot surface (such as a hot ignition probe) is considered. The spray of droplets is modelled using the sectional approach and a mono-sectional case is adopted for simplicity. A single global chemical reaction is assumed for the case when ignition occurs. The mathematical analysis makes use of a small parameter that is exploited for an asymptotic approach. The analysis produces a criterion for ignition that includes effects of the flow field, the reactants and the fuel spray-related parameters. Numerical computations reveal the way in which the latter impact on whether ignition will occur or not.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4643
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.