Abstract

A quantum dot molecule doped with a single electron in the presence of diagonal and off-diagonal carrier-phonon couplings is studied by means of a nonperturbative quantum kinetic theory. The interaction with acoustic phonons by deformation potential and piezoelectric coupling is taken into account. We show that the phonon-mediated relaxation is fast on a picosecond time scale and is dominated by the usually neglected off-diagonal coupling to the lattice degrees of freedom leading to phonon-assisted electron tunneling. We show that in the parameter regime of current electrical and optical experiments, the microscopic non-Markovian theory has to be employed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.