Abstract
Oxidizing SiC in the presence of various impurities (e.g., sodium, potassium, nitrogen, and phosphorous) has been previously observed to result in a significant reduction of the electron traps in the gate oxide near the SiC-SiO2 interface. Here, we explore the electro-chemistry of the impurity elements involved using first-principles quantum mechanical calculations. Our results indicate that the observed reduction in the near interface traps (NITs) is not due to direct chemical passivation. Instead, we show that the quenching occurs because the NIT energy levels are lowered by the Coulombic tail of the positively charged impurities and thus become inaccessible to the experimental measurements. This new proposal explains a variety of experiments and leads to specific predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.