Abstract
AbstractBacterial induced carbonate mineralization has been demonstrated as a new potential method for restoration of limestones in historic buildings and monuments. We claim here the formation of calcium carbonate was controlled by extracellular polymeric substances (EPS) isolated from Bacillus pasteurii. The process of crystallization nucleation was accelerated in the presence of cells and inhibited in the presence of EPS. The CaCO3 film deposited on cement paste surface was about 100 µm after 7 d treatment. The results of various restoring methods showed that higher decrease of water absorption of cement paste was gained in brushing application in the presence of agar, which could maintain urease with high activity in long term compared to spraying method. The coefficient of capillary suction of cement paste treated with brushing method was reduced by 90%. Mixed media consisted of sands, urea, Ca2+ and concentrated biomass, was injected into artificial cracks of cement paste followed by continual nutrient supplement, and CaCO3 particles were precipitated gradually between sands particles which were combined with cement matrix. The results showed that the compressive strength of recovered specimens was restored to 84%, which demonstrated that this kind of bio‐restoration method is effective in repairing surface defects of cement‐based materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.